

Testing Policy Document
Demo 4

​ Testing Policy Document - Demo 4

Table of Contents​

1. Introduction... 3
2. Overview.. 3
3. Testing Processes...4

3.1. Running Tests..4
3.2. Review Approval... 4
3.3. CI/CD Testing Workflow.. 4
3.3. Continuous Improvement.. 4

3. Functional Testing...5
3.1. Frontend Testing..5

3.1.1 Unit Testing..5
3.1.2 Integration Testing... 5

3.2. Backend Testing.. 6
3.2.1 Overview... 6
3.2.2 Unit Testing..6
3.2.3 Integration Testing... 6

3.3. Implementation..6
4. Non-Functional Testing.. 8

4.1. Overview... 8
4.2. Security Testing... 8
4.3. Performance and Latency Testing...9

2​ ​ BLT’S

​ Testing Policy Document - Demo 4

1. Introduction

This testing policy outlines the testing strategy for the Snap Vision React Native app.
The policy covers functional testing (unit, integration, and E2E testing), CI/CD
automation, and non-functional aspects such as security, performance, and latency.
Adherence to this policy guarantees consistent code quality, predictable
deployments, and a reliable user experience.

2. Overview

1.​ Jest
Tests both the frontend (React Native app in snap-vision) and the backend
(Express.js app in snap-vision-backend)due to its compatibility with
JavaScript/TypeScript, mocking capabilities, and widespread adoption in the
React Native ecosystem.

2.​ React Testing Library

Renders components and simulates user interactions in frontend tests.

3.​ Supertest
Tests Express.js API endpoints through HTTP requests.

4.​ GitHub Actions
Automates test execution on pull requests and merges, ensuring CI/CD
compliance and simplifies CI/CD without third-party dependencies.

5.​ CodeCov
Monitors code coverage for simple integration with GitHub Actions, reliable
coverage reporting, and good documentation.

3​ ​ BLT’S

​ Testing Policy Document - Demo 4

3. Testing Processes

3.1. Running Tests
●​ To executes all tests locally :

 npm test

●​ CI/CD: Tests are automatically run on every pull request and merge to dev or
main branches via GitHub Actions.

●​ To generate a code coverage report :

 npm run test:coverage

3.2. Review Approval
●​ All code reviews must verify that test coverage meets the project’s minimum

threshold.
●​ Tests must pass successfully before merging any branch into dev or main.

3.3. CI/CD Testing Workflow
Automation:
GitHub Actions handles automated testing on all pull requests and merges.​

Workflow Steps:
1.​ Run unit tests (frontend & backend)​

2.​ Run integration tests and end-to-end scenarios​

3.​ Execute security tests (Firestore rules, role-based access)​

4.​ Check code coverage thresholds​

5.​ Perform linting and code quality checks​

6.​ Build verification for deployment readiness

3.3. Continuous Improvement

●​ Regularly evaluate the performance and effectiveness of the test suite.
●​ Incorporate lessons learned from bugs, failures, and user feedback to improve

testing strategies.
●​ Update the testing policy and workflow to reflect project evolution, new

features, and technology updates.

4​ ​ BLT’S

​ Testing Policy Document - Demo 4

3. Functional Testing

3.1. Frontend Testing

3.1.1 Unit Testing
Unit tests isolate individual components, hooks, and utilities while mocking external
dependencies such as Firebase and navigation. This ensures that each component
functions correctly in isolation.

Tools:

●​ Jest: Framework for running tests and mocking.
●​ React Testing Library: For querying, rendering, and interacting with React

components in a way that simulates real user behavior.

3.1.2 Integration Testing
Integration tests validate interactions between components and user flows without
mocking dependencies. Full contexts such as ThemeProvider and
NavigationContainer are used to simulate realistic scenarios.

Tools:

●​ Jest with React Testing Library for testing assemblies of components and their
interactions.

5​ ​ BLT’S

​ Testing Policy Document - Demo 4

3.2. Backend Testing

3.2.1 Overview
The Snap Vision backend is built with Express.js and uses the Firebase Admin SDK
for authentication and Firestore interactions. Testing focuses on API endpoints,
middleware, and security rules. External services like OpenRouteService are
mocked to isolate functionality.

3.2.2 Unit Testing
Unit tests isolate individual server routes and functions, mocking external
dependencies such as Axios to test logic without relying on network calls.

Tools :

●​ Jest: For test execution, assertions, and mocking.
●​ Supertest: For simulating HTTP requests to the Express server.

3.2.3

Integration Testing
Integration tests run the full Express server, simulating real HTTP requests and
verifying end-to-end behavior, including Firestore cleanup. External APIs are
mocked, and Firebase emulators are configured for local testing.

Tools :

●​ Jest with Supertest: For HTTP request testing against the running server.
●​ Axios mocks: To simulate from external services responses

OpenRouteService.
●​ Firebase Admin SDK: For Firestore operations in tests.

3.3. Implementation

●​ Tests are written concurrently with feature development to ensure immediate
verification of functionality.

●​ Test files are located in __tests__/ directories within the respective modules.

6​ ​ BLT’S

​ Testing Policy Document - Demo 4

●​ The project aims for ≥80% code coverage, tracked via CodeCov for critical

files such as components, services, and hooks.
●​ CI/CD automation using GitHub Actions ensures that all tests run on pull

requests and pushes to dev and main. Workflows enforce passing tests and
minimum coverage thresholds.​

Repository Access:
https://github.com/COS301-SE-2025/Snap-Vision/tree/main/snap-vision/__tests__

7​ ​ BLT’S

https://github.com/COS301-SE-2025/Snap-Vision/tree/main/snap-vision/__tests__

​ Testing Policy Document - Demo 4

4. Non-Functional Testing

4.1. Overview
Non-functional testing ensures that the Snap Vision app meets requirements beyond
functional correctness, including security, performance, latency, and usability. These
tests help maintain reliability, responsiveness, and a safe user experience under
various conditions.

4.2. Security Testing
Security tests focus on protecting data and enforcing role-based access.

Key examples include:

●​ Verifying admin-only operations​

●​ Ensuring user data isolation​

●​ Testing authentication flows​

Tools:

●​ Firebase Rules Unit Testing: Simulates Firestore rule enforcement to validate
correct access control and data protection.

8​ ​ BLT’S

​ Testing Policy Document - Demo 4

4.3. Performance and Latency Testing
Performance and latency tests monitor the real-time behavior of the app, including
API response times, data loading efficiency, and user interaction speed.
Key Examples Include:

●​ Identify bottlenecks in network or computation

●​ Measure success rates for operations

●​ Ensure responsiveness under varying conditions, including slow networks or

low-end devices

Tools:

Firebase Performance Monitoring (FPM):

●​ Automatically traces key operations in the React Native frontend

●​ Collects metrics on latency, success rates, and potential performance issues

●​ Provides actionable insights without requiring manual instrumentation for
every operation

Examples:

1.​ App Launch Performance:

●​ App now starts 24% faster for the majority of users​

●​ 90% of users experience app startup in 1.24 seconds or less​

9​ ​ BLT’S

​ Testing Policy Document - Demo 4

●​ Consistent improvement observed over the last 3 days​

●​ Performance gain is stable across all app versions

2.​ Registration Latency

●​ Registration process is now 19% faster
●​ ​

90th percentile indicates most users experience this improvement
●​ ​

Consistent reduction across all app versions tested
●​ ​

Improvement observed within 1 day

10​ ​ BLT’S

	1. Introduction
	2. Overview
	
	3. Testing Processes
	3.1. Running Tests
	3.2. Review Approval
	3.3. CI/CD Testing Workflow
	3.3. Continuous Improvement

	3. Functional Testing
	3.1. Frontend Testing
	3.1.1 Unit Testing
	3.1.2 Integration Testing

	3.2. Backend Testing
	3.2.1 Overview
	3.2.2 Unit Testing
	3.2.3 Integration Testing

	3.3. Implementation

	
	
	
	4. Non-Functional Testing
	4.1. Overview
	4.2. Security Testing
	4.3. Performance and Latency Testing
	
	
	
	
	
	
	
	

